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Computer-Assisted Mechanistic Structure-
Activity Studies: Application to Diverse
Classes of Chemical Carcinogens
by Gilda H. Loew,* M. Poulsen,* E. Kirkjian,* J. Ferrell,*
B. S. Sudhindra,* and M. Rebagliati*

In the first part of this paper we have indicated how the techniques and capabilities of theoretical
chemistry, together with experimental results, can be used in a mechanistic approach to structure-activity
studies of toxicity. In the second part, we have illustrated how this computer-assisted approach has been
used to identify and calculate causally related molecular indicators of relative carcinogenic activity in
five classes of chemical carcinogens: polycyclic aromatic hydrocarbons and their methyl derivatives, ar-
omatic amines, chloroethanes, chloroalkenes and dialkyl nitrosamines. In each class of chemicals studied,
candidate molecular indicators have been identified that could be useful in predictive screening ofunknown
compounds. In addition, further insights into some mechanistic aspects of chemical carcinogenesis have
been obtained. Finally, experiments have been suggested to both verify the usefulness of the indicators
and test their mechanistic implications.

Overview
The evaluation of large numbers of diverse chemicals

for potential toxic effects in an industrial or environ-
mental setting is an enormous task. In conjunction with
in vivo and in vitro testing, computational structure-
activity studies can be very useful in such evaluations.
Since all computational methods require at least an in-
itial data set to test the reliability of selected molecular
descriptors prior to their use in predictive screening,
the question then is how to optimize the potential sym-
biosis between experimental and computational risk as-
sessment procedures.
As shown in Figure 1, a five-step protocol is sug-

gested. The first step is to divide the chemicals into
subgroups according to structure and functional groups.
The next suggested step is to develop a systematic and
self-consistent data base of toxic effects for represent-
ative members of each class of compounds. The more
specific the biological activity tested, the more useful
the tests will be in relating structure to activity.
As a third step, studies of what causes the observed

toxic effects, i.e., mechanistic studies for a limited num-
ber of representative compounds of different classes of
chemicals, would be of value. Mechanistic studies can
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be done using both experimental methods and the tech-
niques of theoretical chemistry. Information coming from
both types of studies can be very useful in selecting
mechanistically relevant molecular descriptors for com-
putation. While in-depth studies might appear to be
relatively time-consuming, they should ultimately lead
to more effective and rapidly coverging risk assessment
schemes.
The fourth step entails selection of molecular descrip-

tors for evaluation. Differing guidelines for this selec-
tion distinguishes classical QSAR (quantitative
structure-activity relationships) from causally related
approaches. In the classical approach, any molecular
property is used which might provide correlation to ac-
tivity. In the "causal" approach, molecular indicators
are selected which might have a causal relationship,
however tenuous, to the observed toxicity based on prior
theoretical or experimental studies.

In the fifth step suggested, each set of chosen can-
didate molecular descriptors is evaluated by some
method that can include both experimental and theo-
retical determination, and their reliability as determi-
nants of toxicity tested (step 5). If successful, their use
for large-scale predictive screening is indicated. If not,
the choice of molecular indicators and/or the method of
evaluation must be re-examined and refined, leading, it
is hoped, ultimately to a useful set of descriptors.
The techniques of theoretical chemistry can be par-
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1. CLASSIFICATION OF COMPOUNDS

Orgb&ize compounds into classes of
chemicals according to structure
and function; i.e. aromatic amines,
halogenated hydrocarbons. etc.

4. SELECTION Oc MOLECULAR DESCRIPTORS

Use the insights obtained from in-
depth studies of limited numbers of
compounds to identify and select a
set of appropriate 'molecular des-
criptors' with mechanistic relevance
to each risk.

5. SCREENING

'Calculate' these descriptors for
many compounds with known activity
in each class by a variety of
methods to test ability of chosen
descriptors to account for known
behavior.

2. PRELIMINARY DATA BASE

Select a limited number of com-
pounds from each class for exten-
sive series of tests; e.g., acute
toxicities. mutagenicity/carcino-
genicity. resistance to chemical
and biological degradation.

4-

3. MECHANISTIC STUDIES

Select a limited number of com-
pounds which have been screened for
different types of adverse effects
to perform in-depth mechanistic
studies relevant to each risk; e.g.
by mechanisms of degradation.
sprcific toxicities

Reexamine mechanistic
basis for selection

No of pArdmeters (more
experiments/calcula-
tions)

I
I
I
I
I
I

Go to Step 13 and
try again

Yes Use as screening
procedure for large
numbers of compounds.

FIGURE 1. Suggested protocol for optimum interaction between computer-assisted and experimental risk assessment.
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ticularly useful in three different steps of the process
outlined in Figure 1: (1) elucidation of mechanisms (step
3); (2) selection of molecular descriptors mechanistically
relevant to a specific risk (step 4); (3) calculation of
selected molecular descriptors of potential use in screen-
ing large numbers of molecules (step 5).

Figure 2 schematically indicates molecular events that
could lead to a toxic response. Either parent compounds
themselves or their chemically transformed products
can be responsible for an adverse effect by interaction
with tissue macromolecules. As further shown in Figure
2, such interactions-either "physical," leading to re-
versible complex formation, or chemical, leading to ad-
duct formation or transformation of tissue
macromolecules-could play a key role in eliciting ad-
verse effects.

In a parallel fashion, the capabilities of theoretical
chemistry embodied in a hierarchy of computer pro-
grams and methods, can be used to characterize these
molecular events. In particular, they can be used to
describe: parent compounds or transformed products
implicated in toxic responses, physical interactions (i.e.,
complex formation) between putative toxic agent and
target molecules, and chemical reactions involved in both
formation of toxic species and in their interaction with
tissue nucleophiles. Thus, computers are the "labora-
tory" where the properties of individual molecular sys-
tems and their physical and chemical interaction with
biological targets can be modeled and calculated.
As shown in Table 1, the techniques used are not

limited to one particular method. In fact, an extensive
library of diverse methods is currently available with
programs of varying degrees of sophistication. The par-
ticular theoretical method selected should depend on the
property to be calculated and the degree of accuracy
needed for its use as a reliable molecular indicator.

Table 1. Capabilities of specific methods of theoretical chemistry.

Empirical energy methods
Rapid calculation of individual molecular conformations with

or without geometry optimization
Rapid characterization of energies and geometries of inter-

molecular complexes typical of physical interactions between
toxic agent-tissue macromolecule physical interactions

Semiempirical quantum chemical methods
Calculate energy-conformation profiles of individual compounds

to investigate conformational flexibility
Calculate electronic properties of individual compounds
Calculate chemical/biochemical reactivity parameters of

individual compounds related to formation of toxic products
or formation of adducts between toxic agents and tissue
nucleophiles

Model chemical/biochemical reactions involved in transformation
to toxic species or adduct formation of them with tissue
nucleophiles

Model intermolecular complex formation, i.e., physical
interactions with tissue components that could lead to adverse
effects

Table 2 describes in more detail the specific capabil-
ities of theoretical chemistry that can be used to cal-
culate properties of putative toxic species related to
their ability to physically and chemically interact with
target tissue molecules.

Table 3 summarizes the techniques of theoretical
chemistry that can be used to characterize reversible
"physical" interactions explicitly, i.e., complex forma-
tion with tissue macromolecules that can play a role in
eliciting adverse effects.
Table 4 further lists methods of theoretical chemistry

that can be used to characterize chemical reactions in-
volved in eliciting an adverse response in either of two
ways: transformation of parent compounds to toxic forms
and transformation of target tissue molecules by toxic
species. From such information, chemical reactivity pa-
rameters for isolated reactants can be extracted and
calculated for a large number of compounds. In addition,
intermediates can be identified and characterized that
might be too transient to be examined experimentally
but which could be implicated in toxicity, or other ad-
verse environmental effects.

Table 2. Capabilities of theoretical chemistry relevant to
calculation of molecular descriptors of putative toxic species.

What can be calculated How it can be useful
Electronic properties Measure of the extent of complex

Net atomic charges formation with polar or
Dipole and higher moments nonpolar solvents and a variety
Ionization potentials of tissue macromolecules
Electron affinities DNA, proteins, and membranes
Molecular electrostatic

potentials

Conformational energies Measure of the nature and
Set of low-energy stability of complex formation

conformers with macromolecules

Chemical reactivity properties Estimate of the relative ease and
Group or atomic electrophil- selectivity in transformation
icities and/or nucleophilicities to specific intermediates and

products
Estimate of the extent and

specificity of covalent adduct
formation with tissue
macromolecules

Table 3. Capabilities of theoretical chemistry to characterize
physical interactions (complex formation) of putative toxic

species with biological target molecules.

What can be calculated How can it be useful
Complex geometry Identify conformational

requirements for complex
formation

Complex stability Select electronic properties
contributing to stability

Ab initio quantum chemical methods
Same capabilities as semiempirical methods, with greater

accuracy and greater cost

Kinetics of complex formation Estimate the importance of
complex formation in the time
scale of interest
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Table 4. Capabilities of theoretical chemistry relevant to
characterization of chemical biochemical reactions leading to

formation of toxic species or adduct formation with
tissue nucleophiles.

What can be calculated
Mechanisms: identification

of reacting groups and the
properties determining their
reactivity

Activation energies

Heats of reaction

Identification and characteriza-
tion of transition states
and intermediates

How can it be useful
Allows identification of chemical

reactivity parameters of
compounds

Estimates of relative rates of
reaction

Estimate of energy requirements
for reaction

Identification and characteriza-
tion of intermediates too
unstable to be examined
experimentally but which could
be implicated in carcinogenicity,
mutagenicity, toxicity, or other
adverse environmental effects

This section summarizes how the techniques of the-
oretical chemistry can be used in a mechanistic approach
to predictive toxicology. As indicated, this mechanistic
approach does not eliminate the need for experiments
but, if successful, invests experimental data with in-
creased usefulness and allows the development of a rapid
screening procedure for toxic effects in unknown com-
pounds. In subsequent sections, we review work on a
variety of classes of chemical carcinogens as an example
of this approach.

Applications: Mechanistic
Structure-Activity Studies of
Chemical Carcinogens
Introduction and Background
As shown in Table 5, a wide variety of chemical classes

have been shown to exhibit mutagenic and carcinogenic

activity by a number of assays, including in vivo animal
testing, bacterial mutagenicity, cell culture transfor-
mations, and sedimentation analysis of DNA. In our
laboratory, we have embarked on a systematic program
of computer-assisted mechanistic structure-activity
studies of a number of different classes of chemical car-
cinogens, divided as suggested in step 1 of the protocol
into different chemical types.

In particular, we have studied five different classes:
polycyclic aromatic hydrocarbons and their methyl de-
rivatives, aromatic amines, aflatoxins, halohydrocar-
bons, and nitrosamines. We report here a summary of
some examples of these studies.

Following step 2 of the protocol, an initial data base
was selected for each of these classes of chemical car-
cinogens. Unfortunately, quantitative self-consistent,
standardized results of in vitro animal tests for carcin-
ogenic activity were not available. Moreover, short-term
in vivo assays were not suitable in some instances, for
example, for halohydrocarbons there is no correlation
between bacterial mutagenic and mammalian carcino-
genic activity. Thus, we chose, for this initial study,
results of qualitative in vivo carcinogenic studies that
allowed either a rank order of analogs to be established
or, in the worse case, a bimodal active/inactive evalu-
ation. More quantitative and consistent biological data
would have rendered our search for reliable molecular
indicators more efficacious. However, while the absence
of such data did not allow a quantitative relationship to
be established, it was possible at least for some classes
of chemical carcinogens to identify useful qualitative
molecular indicators of relative carcinogenic activity.
Moreover, results obtained for each class led to addi-
tional mechanistic insights and suggestions for further
experiments.

Polycyclic Aromatic Hydrocarbons and
Their Methyl Derivatives

Polycyclic aromatic hydrocarbons (PAHs) were se-
lected for initial studies, since they have long been im-
plicated as mutagens and carcinogens (1). They are
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FIGURE 3. Detoxification and activation pathways for polycyclic aromatic hydrocarbons.
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Type

Polycyclic aromatic
hydrocarbons

Aromatic amines

Alkyl nitrosamides

Aryl dialkyl triazenes

Carbamates

Aflatoxin

Azo and acridine dyes

Nitrosamines

Pyrrolizidine alkaloids

Halogenated hydrocarbons

Directly acting alkylating agents

COMPUTER-ASSISTED STRUCTURE-ACTIVITY STUDIES

Table 5. Classes of compounds with known carcinogenic activity.

Structure of typical compound

Benzo[a]pyrene
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0
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Incidence

Cigarette smoke

Laboratory reagent, dye

Cured meat, plastics,
rubber, pesticides

Dyes, rodent repellent,
herbicide

Solvent

Peanut butter, fungi,
green plants

Dye

Cured meat, plastics,
rubber, pesticides

Plants, bush teas,
herbal remedies

Plastics, pesticides (DDT)
refrigerant

War gas

Mustard Gas
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widely distributed throughout the environment, being
found in urban air (2), cigarette smoke (3) and foodstuffs
(4), and pose an important health threat. As a result,
much experimental and theoretical effort has been aimed
at understanding the mechanisms by which they initiate
carcinogenesis.
Early work established that reactive intermediates

capable of binding to DNA and other tissue nucleophiles
are formed in PAH metabolism (5). Indirect evidence
accumulated that PAHs require metabolic activation to
become active carcinogens (6), but it was not until very
recently that the complete sequence of intermediates
between a parent PAH and DNA adduct was demon-
strated (7). Based on this work and subsequent studies
of benzo(a)pyrene (8), benz(a)anthracene (9), 7-methyl-
benz(a)anthracene (10), chrysene (11), dibenz(a,h)-
anthracene (12), and 3-methylcholanthrene (13,14), the
concept of bay-region diol epoxides as proximate car-
cinogens was advanced. As shown in Figure 3, activa-
tion of a parent PAH to a bay-region diol epoxide involves
three enzymatic reactions. The first is a cytochrome P-
450-mediated epoxidation at the bond adjacent to the
bay region [e.g., bond 3,4 in benz(a)anthracene], which

HYPOTHESIS

can be called a distal bay-region bond. The second is an
epoxide hydrase-catalyzed hydrolysis of the distal bay-
region epoxide to a trans-dihydrodiol. The third is an-
other P-450-mediated epoxidation yielding the bay-re-
gion tetrahydrodiol epoxide.
For the parent hydrocarbon, as well as the inter-

mediate species, there are detoxification pathways com-
peting with this activation pathway. The sum of the
detoxification and activation processes determines the
net amount of available diol epoxide. These species are
thought to attack critical nucleophilic sites in DNA,
either directly in an SN2 reaction (15) or, after forming
a carbocation, in an SN1 reaction (16).
While every step involved in PAH activation and de-

toxification has not yet been totally elucidated, the sig-
nificant progress outlined above makes it possible to use
a mechanistic approach to structure-activity correla-
tions for this class of carcinogens.

In addition to the widely accepted bay-region diol
epoxide (BRDE) hypothesis (7-14,17-19), as shown in
Figure 4, two other hypotheses were considered. One
is the hypothesis that differential rates of transforma-
tion of the PAH to K-region oxides might relate to car-

ACTIVATING EFFECT OF
METHYL SUBSTITUENTS

INCREASE DIOL
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BAY REGION DETOXIFICATION > r
1 DIOL EPOXIDE L

ADDLCL
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CARBOCAT ION
FORMATION

INCREASE K-REGION
EPOXIDE FORMATION

K-REGION i L
2 EPOXIDE

DECREASE DETOXIFICATION
PRODUCT FORMATION

,

RADICAL +3 CATION

DECREASE IONIZATION
POTENTIAL

INCREASE
SUPERDELOCALIZATION

OF MOST NUCLEOPHILIC
RING CARBON ATOM

FIGURE 4. Three alternative hypotheses for origin of carcinogenic activity in polycyclic aromatic hydrocarbons and their consequences for
the effect of methyl substituents on this activity.
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cinogenic potencies (8). The other hypothesis
investigated is based on an alternative activation scheme
suggested by Cavalieri and co-workers (20,21). They
envision PAH as undergoing one-electron oxidation,
yielding a reactive radical-cation intermediate which acts
as an ultimate carcinogen.
Using each of these three hypotheses, we have iden-

tified and calculated relevant molecular properties for
a series of 17 PAHs (Fig. 5). In addition, we have stud-
ied the effect of methyl groups on carcinogenic activity
(Tables 6 and 7) of PAHs considering the three hy-

potheses summarized in Figure 4, in studies of 14 methyl
derivatives of benz(a)anthracene and 13 methyl and fluoro
derivatives of chrysene. At least qualitative carcino-
genic potency data exist for these PAHs (22), methyl-
benz(a)anthracenes (23,24), and chrysene (25-28), making
them suitable for an initial data set.
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FIGURE 5. Structures of 17 polycyclic aromatic hydrocarbons studied. Qualitative carcinogenicities shown in parentheses are taken from
Arcos and Argus (23).
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Table 6. Carcinogenicity of benz[alanthracene derivatives.a

MBAsb Carcinogenicity DMBAsc Carcinogenicity
1,2,3,4 - 9,10 + +

5 - 6,8 ++++
6 ++ 5,12 -
7 +++ 6,12 ++++
8 ++ 7,12 ++++
9 + 8,12 ++++
10 +
11 -
12 ++

a Dimethvlfalanthracene.
bMethylbenzo[a]anthracene.
CData from Dunning and Curtis (24) and Stevenson and Von Haam

(25).
Table 7. Carcinogenicities of methylchrysenes, dimethylchrysenes,

and fluoromethylchrysenes.a
Carcino- Carcino- Carcino-

MCb genicity DMCC genicity n-F-5MCd genicity
1 - 2,3 - 1 -
2 _ 5,6 + +(?) 3 _
3 - 5,12 - 6 + + + +
4 - 7 ++++
5 ++++ 9 ++++
6 - 12 +
aCarcinogenicities from the literature (25-28).
bMethylchrysenes.
'Dimethylchrysenes.
dFluoro-5-methylchrysenes.
In the studies reported here, three types ofproperties

were calculated related to the ability of parent com-
pounds to form each type of toxic species proposed:
radical cations, K-region epoxides, and bay-region diol
epoxides. In addition, properties related to the electro-
philicity of each toxic species such as charge distribu-
tions and stabilities of carbocations were also calculated.
The major results of these studies (29-33) are summa-
rized below. Additional support was provided for the
bay-region diol epoxide as the active carcinogen in con-
trast to the K-region epoxide or radical cation of the
parent PAH. A dominant mechanism was determined
by which methyl substituents appear to alter the car-
cinogenic activity of parent PAH compounds such as
benz[a]anthracene and chrysene. Activation by CH,
groups appears to occur mainly by the stabilization of
the bay-region diol epoxide carbocations. A set of reac-
tivity parameters ofPAHs and their methyl derivatives
was identified and calculated which can serve as pre-
dictors of their major metabolites and the extent of
metabolism by the enzymes (cytochrome P-450) impli-
cated in their transformations to carcinogenically active
forms. A single molecular descriptor which, as shown
in Table 8, is a reliable indicator of the related carcin-
ogenic activity of a series of 44 PAHs and their methyl
derivatives, was identified and calculated. This prop-
erty is the calculated ease of formation of the carbo-
cation of the bay-region diol epoxide. Having proven
reliable for these known compounds, it can now be used
in screening procedures to predict at least the presence
or absence of carcinogenic activity in untested com-

Table 8. Calculated energyu of carbocation formation and observed
carcinogenic potency for 44 PAHs and their methyl derivatives.

Compound AE, kcal/molea Carcinogenicity
6,12-DMBA 0 + + + +
Dibenzo[a,i]pyrene 1.9 + + + +
Dibenzo[a,h]pyrene 3.2 + + + +
7,12-DMBA 3.8 ++++
8,12-DMBA 5.1 + + + +

12-MBA
5,12-DMBA
Benzo[a]pyrene
5.6-DMC
5,12-DMC

Dibenzo[a,e]pyrene
5-MC
6.8-DMBA
6-F-5MC
6-MBA

9-F-5MC
7-F-5MC
9,10-DMBA
7-MBA
10-MBA

Dibenz[a,h]anthracene
8-MBA
9-MBA
11-MBA
Benz[a]anthracene

5-MBA
Dibenz[a,c]anthracene
12-F-5MC
Benzo[e]pyrene
6-MC

Picene
7,12-dimethylbenzo[b]chrysene
2,3-DMC
Benzo[b]chrysene
3-MC

4-MC
1-MC
Triphenylene
2-MC
Chrysene

Phenanthrene
5,10-Dimethylanthracene
Anthracene
Naphthalene

5.3
6.8
7.2
7.3
7.4

8.1
9.2
9.2
9.7
9.7

11.3
11.3
13.2
13.3
13.7

14.4
14.4
14.5
15.0
15.0

15.2
15.8
17.4
18.0
18.2

18.3
18.3
19.0
19.1
19.5

19.8
19.9
20.0
20.0
20.6

22.2
24.5
27.7
35.1

++

+++ +(?

+ +

+ ++

++

++

+

+

+

aEnergies relative to 6,12-DMBA.

pounds of these classes. Calculated values ofAE greater
than 15 kcal/mole indicate little or no activity.
The major exceptions to the reliability of this indi-

cator correlations obtained can be explained in terms of
the steric effect of a methyl group adjacent to the bay
region, the 5-position in BA and the 12-position in chry-
sene. Called the "peri" effect (19), it has been proposed
to inactivate PAH by blocking distal bay-region diol
formation, the second activating step which we have
not modeled. However, the results of our studies offer
an alternative explanation of the peri effect.
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Energy/conformation calculations performed on the
trans-3 , 4-diol of 5,12-dimethylbenz[a]anthracene
(DMBA) to determine its minimum energy conforma-
tion indicate that the diol substituents have a different
conformation from that in any other methylbenzanthra-
cene. Although it appears minor, this change in confor-
mation could prevent the diol from being further
epoxidized at the 1-2 position: or if the diol epoxide is
formed, the altered conformation could sterically inhibit
interaction of its carbocation with tissue nucleophiles.

In terms of predictive indicators, the steric effect of
a peri-methyl group should be added to the calculated
values of carbocation stabilities in screening unknown
methyl PAH compounds for carcinogenic activity.

mon with PAHs, ring epoxidation could contribute other
active forms, while ring C-hydroxylation leading to
phenols could be a detoxification pathway.

0
II

H N

NH2 N

CH3

N\ N

IN

dI D

I0

OH3

HN-0HN
+ >N N N

dR

0f
Aromatic Amines

In common with PAHs, the aromatic amines are an
extensively studied class of chemical carcinogens (34-
43) that are known to undergo metabolic activation by
cytochrome P-450s to active carcinogens. The generally
accepted pathway leading to carcinogenic or mutagenic
activity of polycyclic aromatic amines (PAA) is sum-
marized in Figure 6. It is now thought that all carcin-
ogenic aromatic amines require metabolic activation by
cytochrome P-450 to N-hydroxylamines (44-51) and fur-
ther enzymatic transfornation to active esters (38,39,52-
54). Arylnitrenium ions (ArNH+) generated by the hy-
drolysis of such intermediates have been postulated
(35,37,48,55) as the ultimate carcinogens of aromatic
amines.
While neither ester precursors nor arylnitrenium ions

of aromatic amines have been detected in vivo, these
latter species have been proposed as the electrophilic
ultimate carcinogen in amine carcinogenesis primary be-
cause of the detection of two types of covalently bound
adducts of esters of polycyclic aromatic amines to nu-
cleophilic sites in DNA and mononucleotides (34,35,38-
40,56,57) and to tissue macromolecules (36,42,58). In
both types of adducts (I,II) for guanine, nitrenium ions
could be the precursor electrophile.
Thus the hypothesized mode of action ofPAA carcin-

ogens involves their initial transformation to hydrox-
ylamines by cytochrome P-450s and their ultimate
conversion to electrophilic arylnitrenium ions which in-
teract with key tissue nucleophiles. In addition, in com-

With these hypotheses as a guide, we have used the
techniques of theoretical chemistry to identify and cal-
culate mechanistically relevant molecular properties
which could be reliable indicators of the extent of car-
cinogenic activity in two different series ofrelated PAA,
substituted anilines (59) and the aromatic amines of dif-
ferent polycycic hydrocarbons shown in Figure 7 (60,61).
The eight PAAs were a small, but particularly chal-

lenging, set of compounds to study. As shown by (+)
and (-) in Figure 7, one of each pair of isomeric amines
is an active carcinogen, while the other is inactive or of
doubtful activity. Mutagenic potency data are also avail-
able for these eight compounds, but not all data were
obtained with the same bacterial strain (62). For iso-
meric pairs, however, their qualitative carcinogenic po-
tency obtained from animal testing (43) is consistent
with mutagenic potency: the weaker mutagen is the
inactive or more marginally active carcinogen. These
subgroups make ideal tests of the ability of calculated
electronic parameters alone to predict relative muta-
genic activity, since effects such as transport and elim-
ination should be more nearly the same for both isomers
of a given pair than for the group as a whole.

Electronic reactivity parameters relevant to the rel-
ative ease of metabolic transformation of each parent
compound to hydroxylamines by cytochrome P-450 and
also to other competing metabolic products involving
ring epoxidation and hydroxylations were calculated.
The reactivity parameters were selected from the known
aspects of the mechanisms of cytochrome P-450 oxida-

PHNLS

7
F~~HDRXYL ACTIVE ARL ATTACK

PAA' AINE ESER NITRENIUM - ON

N~~~~~~~~~IN
EPOXIDES

FIGURE 6. Activation and detoxification pathways of polycyclic aromatic amines.
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FIGURE 7. Structure of eight polycyclic aromatic amines studied.

tions as summarized in Figure 8. All oxidations by this
enzyme system involve transfer of an electrophilic ox-
ygen atom to the substrate, and three major metabolic
transformations are possible for the PAAs: N-hydrox-
ylation to form hydroxylamines, ring hydroxylation to
form phenols and ring oxidation to form epoxides. Plau-
sible mechanisms for these oxidations are also indicated
in Figure 8. N-Hydroxylation could proceed by addition
of the electrophilic oxygen to the lone pair of the nitro-
gen with rearrangement of the hydrogen to form the
hydroxyamine. Direct phenol formation could occur by
addition of the electrophilic oxygen to the IT-orbital of
the ring carbon to form a tetrahedral intermediate or
transition state followed by rearrangement of the hy-
drogen atom to form the phenol. Ring epoxidation could
occur by direct addition of the electrophilic oxygen across
the ring C = C bond and perpendicular to it. Consistent
with these mechanisms, the nucleophilicity of the ni-
trogen atom is an appropriate biochemical reactivity

parameter to monitor the extent of formation of hy-
droxylamine, and the nucleophilicity of the ring carbon
atoms and ring wr bonds should indicate the extent of
formation and preferred sites of formation of phenol and
epoxides. An appropriate measure of atom and T-bond
nucleophilicity used was their superdelocalizability which
is an energy-weighted average of the electron density
centered on a given atom (SA) or bond RABi(T).
Parameters were also calculated relevant to the sta-

bility and electrophilicity of each arylnitrenium ion, the
postulated ultimate carcinogen of PAA. Stabilities of
arylnitrenium ions relative to sulfate esters (AENH+)
were calculated. The relative electrophilicities of aryl-
nitrenium ions were estimated using two electrophilic
indices. One is a measure of incipient covalent adduct
formation. It is the calculated electron density distri-
bution on the nitrogen atom and the carbon (C,B) ad-
jacent to it in the lowest empty molecular orbital (LEMO)
calculated by the INDO method. These two atoms would
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FIGURE 8. Proposed mechanisms of oxidation of aromatic amines by cytochromes P-450.

act as electron acceptors in an incipient reaction with
target nucleophiles to form adducts of type I and II,
respectively. The other measure of electrophilicity used
was the net calculated charge on each atom, a measure
of the extent of electrostatic interactions.

Finally, we have explicitly characterized the ener-
getics and geometries of intermolecular complexes that
could be precursors to adducts of type I and II for ad-
enine and guanine in order to help understand why type
I adducts are favored and why guanine is a preferred
site of attack over adenine as a target nucleophile
(38,39,56,63-68).

In characterizing carcinogen-base complexes, the ni-

trenium ion of 2-aminonaphthalene was used as a pro-
totype ultimate carcinogen. Coplanar complexes, as well
as stacked complexes corresponding to intercalation
which could lead to adducts of type I and II, respec-
tively, were considered in detail. Intermolecular energy
calculations by both quantum mechanical (69) and em-
pirical energy methods (70) were made of arylnitrenium
complexes with each base and the steric feasibilities of
forming the most energetically favored complexes ex-
amined graphically.
Molecular Indicators ofRelative Mutagenicity/Car-

cinogenicity. Table 9 summarizes the calculated pa-
rameters which should be most relevant as molecular

Table 9. Correlation of mutagenic potency and calculated molecular indices for isomeric pairs of polycyclic aromatic amines.

max (HC)
SN(IT), RAB(T), SC(sr), RAB(T), p (LUMO)h

Mutagenicity me charge/ me charge/ me charge/ me charge/ AENH',
Compounda Test strainb rev/nMc eVd eVd eVd,e eVd f aug PN Pc5
2-Aminofluorene(+) TA 98 205 144 21.03 62.5 20.42 0.703 0.428 0.161
4-Aminofluorene (-) TA 98 0.3 141 20.38 70.5 20.42 0.694 0.407 0.158

2-Aminonaphthalene (+) TA 100 8.5 143 23.55 62.8 22.99 0.707 0.433 0.262
1-Aminonaphthalene (-) TA 100 0.4 140 22.96 69.5 22.99 0.693 0.357 0.215

2-Aminoanthracene (+) TA 98 510 141 24.43 67.7 23.89 0.686 0.363 0.291
1-Aminoanthracene (-) TA 98 22 135 23.89 70.4 23.89 0.688 0.323

6-Aminochrysene (+) TA 1530 155 141 24.60 65.7 24.73 0.686 0.306 0.245
1-Aminopyrene (+) TA 1530 8.6 138 25.36 64.8 24.91 0.667 0.206 0.115
a(+) (-) refer to qualitative carcinogenic data. Some (-) are disputed carcinogens but much weaker than their siomeric partners.
bTa 98 measures frame shift mutation and contains a plasma R factor which enhances mutation; TA 100 measures base substitutions and

contains a plasma R factor which enhances mutation; TA 1530 measures frame shift mutations.
cMutagenicity data from Ames (62) and unpublished data from the same laboratory.
dUnits of all nucleophilic superdelocalizabilities, SA,B,C,N(1f) and RAB(rr) are in millielectron charge/V
eThe maximum fT superdelocalizability on any carbon atom in the molecule, neglecting the carbons ortho to the amine group.
'Reactivity of the most reactive bond in the corresponding aromatic hydrocarbon.
gStability of arylitrenium ion relative to the sulfate ester of the N-hydroxylamine. The larger the number the less stable the ion.
h Electron density on nitrogen atom and C. in lowest energy empty molecular orbital of the arylitrenium ion. This quantity is a measure of the

electrophilicity of the nitrogen in incipient covalent interactions.
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indicators of observed carcinogenic and mutagenic po-
tencies of the eight PAAs studied. Comparing the re-
sults for pairs ofisomers, in each case the value of SN(rr),
chosen as an indicator of the extent of formation of
hydroxylamine from parent compounds, is larger for the
more potent mutagen/carcinogen. Also, the less potent
isomer in each case has the ring carbon which is most
reactive to direct phenol formation, i.e., larger value of
Scm`0(iij. Thus, direct phenol formation appears to be
an effective detoxification pathway. Ring epoxidation
RAB(rT), on the other hand, appears to be more activat-
ing than detoxifying, since some direct relationship is
observed between mutagenicity and rr-bond reactivity.
Taken together, the results imply that competition

between ring hydroxylation (detoxification) and N-hy-
droxylation (activation) might be a crucial factor in de-
termining mutagenic/carcinogenicity. The importance
of such metabolic factors is suggested by the fact that
1-hydroxylnaphthylamine is a more potent mutagen than
the 2-hydroxylamine, while the parent compound activ-
ities are reversed. Thus, the inactivity of the parent
compound could be due to competing ring phenol for-
mation, particularly in the 4-position thereby prevent-
ing formation of significant amounts of the 1-
hydroxylamine.

Considering the properties of the postulated inter-
mediates, neither hydroxylamines nor sulfate esters ap-
pear to be electrophilic by either a charge or overlap
criteria. This is in contrast to results for the postulated
ultimate carcinogen, the arylnitrenium ion, where the
calculated quantities AENH', PN and Pc revealed elec-
trophilicity activity. A
For all the amines studied, the nitrogen atom and the

ring carbon atom adjacent to it (C) were the most elec-
trophilic sites by the "overlap criterion" of having the
largest electron density (PN and Pc ) in the lowest un-
occupied molecular orbital (LUMO). This result is con-
sistent with the identification of adducts of guanine
involving the nitrogen and the ,B carbon atom of aro-
matic amines. However, the more stable the arylni-
trenium ion (AENH+), the less electrophilic these two
atoms are is in terms of either their net charge or their
extent of participation in the lowest empty molecular
orbital. Such an inverse correlation is reasonable, since
the delocalization which leads to stabilization of the ca-
tion also leads to less charge or electron density local-
ization on the nitrogen atom and ring carbon atoms
adjacent to it. This balance of effects between AENH+
and PN, Pc, can explain why the three-ring aromatic
system (2-aminoanthracene) with intermediate values
of both arylnitrenium ion stability and electrophilicity
is the most potent mutagen. Between isomers, the more
electrophilic the arylnitrenium ion, the more potent the
parent amine activity. However, all arylnitrenium ions
might be electrophilic enough to interact with DNA if
formed to appreciable extent. In summary then, five
calculated properties can be used as reliable indicators
of relative carcinogenic/mutagenic potencies of poly-
cyclic aromatic amines to be further tested in predictive
screening. Three of these are measures of metabolic

transformations: two to active arylnitrenium metabo-
lites [SN(A) and AENH'] and one to inactive hydroxyl
metabolites Scr(,rr), and two are measures of covalent
adduct formation (electrophilicity) of the arylnitrenim
ions (PN and Pc in LEMO).

In a similar study of a series of aniline derivatives
(60), identification and calculation oftwo mechanistically
relevant properties of substituted anilines were made
which correlated with their activity and hence could be
used as predictors in screening untested aniline deriv-
atives for presence or absence of activity. One property
is a measure of the extent of metabolism to hydroxyl-
amines and the other of the ease of formation of the
arylnitrenium ion.
Mechanistic Inferences ofResults ofStudies ofAr-

omatic Amines. Further verification is obtained that
arylnitrenium ions formed by N-hydroxylation and ac-
tive ester formation appear to be the likely ultimate
carcinogens of this class of compounds. It is determined
that the carcinogenic activity of parent PAA could be
due to a balance of the stability and electrophilicity of
the arylnitrenium ions formed from them, and indicated
for the first time that detoxification pathways such as
ring hydroxylations might play a major role in deter-
mining relative carcinogenic potencies of aromatic amines
and could account for reversal of relative activities be-
tween parent amines and their synthetically produced
hydroxylamines. Features in interactions with DNA
which determine observed specificity of adduct forma-
tion of aromatic amines with DNA, i.e., guanine at-
tacked preferentially to adenine, and in guanine the C8,
position is preferred over the exocyclic amine group at
C2, are calculated and identified.
Guanine prefers to form coplanar complexes which

can be direct precursors to covalent bond formation be-
tween C8 and the nitrogen atoms of the nitrenium ion,
while adenine prefers stacked complexes which could
lead less readily to this type of adduct. If a coplanar
approach in the major groove of the DNA helix is in-
volved in the formation of the major adduct, the inter-
mediate formed by guanine is more stable than that
formed by adenine, implying a lower energy transition
state. Our results strongly imply that it is this difference
in preferred behavior, coplanar complexes with guanine
versus stacked complexes with adenine, that accounts
for the observed preference for C8-N adduct formation
with guanine. This prediction could be tested by ex-
perimentally measuring the extent of intercalation of
arylnitrenium ions into poly-A and poly-G by measuring
unwinding angle and association constants relative, for
example, to the known behavior of ethidium bromide
(71). Such measurements would further test the meth-
odology employed here and could corroborate the im-
plications of these calculations for the mechanism of
arylamine carcinogenesis/mutagenesis.

Ethylene Chlorides and Chloroethanes
As suggested in steps 2 and 3 in the proposed pro-

tocol, the related classes of halohydrocarbons ethylene
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FIGURE 9. Structures of nine parent chloroethanes and six chloro-
ethylenes included in this study.

chlorides and chloroethanes shown in Figure 9 were
selected for study because ethylene chlorides and chlo-
roethanes are widely used in industry, and because a

number of analogs such as vinyl chloride (72-74) and
1,2-dichloroethane (75,76) have been shown to cause

cancer in laboratory animals and are implicated in in-
creased tumor incidence and mortality in humans as well
(77,78). In addition, mechanistic studies were available.

Specifically, six chloroethanes have been shown to
produce tumors in experimental animals following both
long-term feeding and inhalation routes of exposure

(75,76). From the results obtained from feeding studies
for hepato cellular carcinomas in mice, the rank order
of carcinogenic activity (as a percentage of female mice
with tumors from low dose) is: 1,1,1,2,2 > 1,1,2,2 >
1,1,2 > 1,1 > 1,2 > 1,1,1.
While much less extensive and consistent data exist

for the ethylene chlorides, available data (79-82) allow
a tentative rank order of carcinogenic potency for four
of these: vinyl chloride (chloroethylene) > vinylidene
chloride (1, 1-dichloroethylene) > tetrachloroethylene >
trichloroethylene, with no studies reported for cis- and
trans- 1,2-dichloroethylene.

Also of significance is that, while some aliphatic ha-
lohydrocarbons have been shown to be weakly active
as bacterial mutagens, in general this short-term assay
fails to correlate with carcinogenic activity of this class
of compounds in susceptible mammalian species (83,84).
It is thus particularly important to explore other means
of evaluating halohydrocarbons for possible carcino-
genic activity as an alternative to costly and time-con-
suming animal tests.
The studies we report here use semiempirical molec-

ular orbital methods embodied in large-scale computer
programs, together with postulated mechanisms of ac-
tion for these two classes of compounds, to identify and
calculate molecular properties for each class that could
be reliable indicators of their relative carcinogenic ac-
tivity in susceptible species and hence be useful in com-
puter-assisted predictive screening of the behavior of
unknown haloalkanes and haloalkenes.
Choice ofMolecular Indicators ofRelative Carcin-

ogenic Activity of Chloroethanes and Chloroethy-
lenes. Following step 4 of the suggested protocol (Fig.
1), fundamental molecular properties which might be
reliable indicators of the relative carcinogenic activity
of these two classes of compounds were selected based
on theoretical (85,86) and experimental (87-89) studies
of model cytochrome P-450 oxidations and known ex-
perimental studies of the metabolism (90-108) and ad-
duct formation (109-118) of ethylene chlorides and
chloroethanes (119-149). Based on this knowledge, the
following assumptions were made and used to choose
causally related properties: (1) P-450 oxidation is the
initial step in enzymatic transformations leading to the
active carcinogenic forms. (2) P-450 oxidation occurs in
two steps by a radical mechanism or, less likely, in one
step by a nonradical mechanism. (3) Subsequent nonen-
zymatic transformations occur as outlined in Figures 10
and 11 for ethylene chlorides and in Figures 12 and 13
for chloroethanes. (4) Acyl chlorides, chloroaldehydes
and, less likely, chloroepoxides are the active carcino-
genic forms of both classes of halohydrocarbons which
act as electrophiles in forming the adducts shown in
Figure 14 with nucleophilic sites of DNA bases. (5) For-
mation of such adducts are important initiating steps in
tumor formation. (6) Properties related to extent of me-
tabolism of the parent compound to the active form and
the electrophilicity of the putative ultimate carcinogen
could be reliable indicators of their relative carcinogenic
behavior.
Properties Relevant to Extent ofTransformation of

Chloroethylenes and Chloroethanes to Putative Ac-
Live Forms. In order to select molecular properties of
parent compounds and intermediates that could serve
as indicators of the extent of transformation of chloroe-
thylenes and chlororethanes to active forms, i.e., chlo-
roepoxides, chloraldehydes, and chloroepoxides, we have
used the main features of oxidative metabolism postu-
lated for these two classes of compounds as summarized
in Figures 10-13.
The properties chosen to monitor extent of metabo-

lism for the chloroethanes are shown in Figure 13. They
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FIGURE 10. Major pathways for metabolic transformations of chioroethylenes.

are thermodynamic criteria for model reactions of their
transformation to active forms. Differences in transport
or steric factors at the enzyme active site that influence
this transformation are not included.

Specifically, both theoretical and experimental evi-
dence indicates that aliphatic hydroxylation occurs by
a radical two-step process (steps Al and A2 in Fig. 13)
involving H atom abstraction (85-89). Thus, we have
calculated and compared the enthalpies of reactions (1)
and (2): AHR(l) and AHR(2), for the eight parent chlo-
roethanes as a possible indicator of their relative extent
of hydroxylation by cytochrome P-450s.
There is, however, still the possibility that P-450-

mediated hydroxylation proceeds by a nonradical, closed-
shell mechanism involving a singlet oxygen. We have
therefore calculated the enthalpy of this reaction AHR(3)
(Fig. 13) as another possible measure of the relative
extent of hydroxylation of the parent compounds by
cytochrome P-450 to form chloroethanols.
Nonenzymatic loss of HCI by the chloroethanols to

form aldehydes and acyl chlorides is the postulated
transformation to these putative ultimate carcinogens.
Thus, differences in the calculated heats of formation
AHR(4) of the alcohols and aldehyde products were used

DNA DNA
ADDUCTS

GLUTATH I ONE

CONJUGATION

as a measure of the relative ease of formation of the
aldehydes. These quantities were determined for each
possible chloroalcohol and aldehyde formed from each
parent compound.
The fully chlorinated parent compounds were not in-

cluded in these studies, since evidence indicates they
are transformed by reductive rather than oxidative P-
450 metabolism (147,148).

Using vinyl chloride as an example, Figure llA shows
the proposed pathway (85-89) to direct formation of acyl
chlorides and chloroaldehydes from parent chloroethyl-
ene compounds via P-450 oxidation. For all chloro-
ethylenes, differences in heats of formation were cal-
culated between all proposed species in each step in this
pathway (Fig. 11A).

In addition to aldehyde formation, initial oxidation of
the parent chloroethylenes can lead to epoxide forma-
tion (Fig. 10). Figure liB indicates the assumed path-
way for this transformation involving triplet/singlet
crossing and ring closing of the initial triplet radical.
Again, differences in heats of formation were calculated
for each step in this pathway for each parent compound.
Chloroepoxides are readily transformed to acyl chlo-

rides and chloroaldehydes in aqueous media (109). Fig-

3
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FIGURE 12. Major pathways for metabolic transformations of
chloroethanes.

ure 11C shows a plausible mechanism for such a
transformation involving proton-assisted ring opening
and isomerization of the carbocation by 1,2 H- or Cl-
ion shifts. Again, relative heats of reaction for all of
these steps in transformation of epoxides to aldehydes
were calculated as an alternative route to direct for-
mation of such putative ultimate carcinogens. Calcu-
lated values of all thermodynamic quantities were
compared with the relative extent of metabolism and
rank order of carcinogenic activity for all parent
compounds.

Electrophilic Properties ofPutative Active Carcin-
ogens. Both the chloroepoxides and aldehydes are
electrophilic enough to form adducts with DNA, and
evidence for such adducts comes from extensive in vitro
and in vivo studies with vinyl chloride (114-117). Two
types of DNA adducts (Fig. 14) have been identified:
an ethenodeoxyadenosine from in vitro and in vivo with
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FIGURE 13. Properties calculated as candidate indicators of relative
transformation of parent chloroethanes to carbonyl products via
initial cytochrome P450 oxidation.

with vinyl chloride and DNA from a variety of species,
(113-115) and an oxoethyldeoxyguanosine most recently
found in animals exposed to vinyl chloride (116). As
shown in Figure 14, the nature of these adducts pro-
vides direct evidence that chloroaldehyde is the adduct
forming metabolite. However, as also shown in Figure
14 the N7-adduct deoxyguanosine could also be formed
by a carbocation of the epoxide which attacks N7 with
loss of HCl from the adjacent carbon.

If formation of the adducts shown in Figure 14 is
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important in tumor formation, then acyl chlorides and
chloroaldehydes likely active forms of ethylene chlo-
rides, with or without the intermediacy of epoxides.
They are also very plausible candidate ultimate carcin-
ogens for saturated halohydrocarbons as well. Thus,
both classes of halohydrocarbons appear to be trans-
formed to the same possible active carcinogenic forms-
acyl chlorides and chloroaldehydes-via initial oxida-
tion by cytochrome P-450, but by different subsequent
steps.
Two types of properties were chosen as indicators of

electrophilic activity of acyl chlorides and chloroalde-
hydes, one relevant to electrophilicity in incipient co-
valent bond formation and the other to more long-range
electrostatic interactions (150-153).

In incipient covalent bond formation, the lowest un-
occupied molecular orbital (LUMO) of the electrophile
functions as the acceptor of electron density from the
attacking nucleophile centers of the DNA bases. The
energy of this orbital was thus chosen as a good indicator
of electron accepting ability. The lower the energy, the
more facile the electron transfer. In addition, the more
electron density the two carbon atoms have in this or-
bital, the more they function as localized electrophilic
centers in covalent bond formation.
The net charges on the two carbon atoms were chosen

as monitors of their electrostatic electrophilicity. The
larger the positive charge on these atoms, the greater
their long-range attraction to the electron-rich nitrogen
atoms of DNA bases.
An additional requirement could be that the C, carbon

must have at least one halogen atom, since in an SN2
displacement a good leaving group like Cl- facilitates
attachment of the incoming nucleophile.
To examine the possibility that carbocations of epox-

ides could also be active carcinogenic forms of the eth-
ylene chlorides, the energy ofLUMO and the net charge
on the cationic carbon atom of these species were also
tabulated.
These calculated electrophilic properties of the pu-

tative ultimate carcinogens, together with those that
indicate the extent of metabolism of the parent com-
pounds, provided a set of molecular properties which
could successfully be used as reliable indicators of rank

order of carcinogenic activity of the chloroethanes and
chloroethylenes.

All calculations made in this study were performed
using an all-valence semiempirical molecular obrital
method called MNDO (modified neglect of diatomic
overlap) introduced in 1977 by Dewar and Thiel (154-
156).
Summary of Main Conclusions of Chloroethane

Study. Molecular determinants of the relative metab-
olism of chloroethanes (Table 10) appear to be the en-

ergy of first step in radical hydroxylation [AHR(1)] by
cytochrome P-540 and the nonenzymatic transformation
to aldehydes [AHR(1)].
Within the uncertainties of both experimental and

theoretical quantities, then, these quantities are prom-
ising predictors of the extent of overall metabolism of
aliphatic chlorinated hydrocarbons. For example, from
calculated values for two compounds which have not
been studied, as shown in Table 10, we would predict
the metabolism of 1,1-dichloroethane to be at least as
extensive as that of pentachloroethane and the metab-
olism of monochloroethane to be comparable or some-
what less than that of 1,1,1-chloroethane.
The combined results shown in Table 10-some cor-

relation of extent of metabolism with A[AHR(l)] and
[AIR(4)], and poor correlation with A[AHR(2)] and
A[AHR(3)]-support the hypothesis that aliphatic hy-
droxylation by cytochrome P-450s occurs by a radical
(rather than singlet) oxene mechanism through the in-
termediacy of aliphatic hydrocarbon radical formation.
Ease of aldehyde formation by loss of HCI from the
alcohol is an additional factor in determining the overall
extent of metabolism of the parent compound.

Table 11, lists all the parent chloroethanes in order
of the energy of the lowest empty orbital of the putative
ultimate carcinogen (aldehyde) they form. As seen in
Table 11 within the uncertainties of the experimental
data, this order corresponds closely to the rank order
of carcinogenic activity of the six known parent com-

pounds. Another good indicator of carcinogenic activity
is the net charge on the CQ carbon of the aldehyde.

Finally, while electrophilic properties of the putative
ultimate carcinogen alone appear to be able to predict
relative order of carcinogenicity, the relative stability

Table 10. Correlation of calculated properties with extent of metabolism of chloroethane.a

Relevant properties Nonrelevant properties
Compounds % Unchanged A[AHR(1)] A[AHR(4)] A[AHR(2)] A[AHR(3)]
Known compounds

1,1,2,3 3% (<4%) 2.3 0 5.70 3.24
1,1,2 8% 0.8 2.48 1.58 1.57
1,1,1,2,2 27% (12-51%) 0.0 0.18 0.0 4.01
1,1,1,2, 48% (21-62%) 4.0 7.08 6.06 4.20
1,2 42% 4.9 11.77 5.15 1.49
1,1,1 97.6% 7.7

Unknown compounds
1,1 - 2.0 2.29 2.97 0
1 - 5.2 12.59 8.91 0.16

aFor definitions see Fig. 13.
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Table 11. Correlation of calculated properties with relative carcinogenicity of parent chloroethane.

Rank
Aldehyde or order

Parent Acyl chloride carcinogenicity E' LUMO, eVb qCa,c XA[HR(4)]

0

1,1,1,2,2 CC13CCI 1 -1.496 +0.191 0.18
0

1,1,2,2 CHC12CCI 2 -1.208 + 0.152 0.00
0

1,1,1,2 CC13CH - -1.033 +0.159
0

1,1,2 CH2ClICl 3 -0.838 + 0.094 2.5
0

1,2 CH2CICH 5 -0.152 +0.058 11.7
0

1,1 CH3CCI 4 -0.073 + 0.016 2.3

0
11

1 CH3CH - 0.756 + 0.025
1,1,1 None 6

aBaed on percentage of female mice with tumors from low dose.
bElr LUMO = energy of the lowest unoccupied molecular orbital in eV LUMO is a I* orbital.
qC = Mulliken net charge on the oa-carbon.

Table 12. Correlation of calculated properties with extent of metabolism of chloroethylenes.

Rank of
Compounds Product metabolism A(AHfr)C A(AH,p)d &(AHj2p)e

0

H2C = CHCI H2CIC- CH b 1 0 0 0

0
II

H2C = CCl2 H2ClC-CClab 1 -4.160 2.29 -4.66
0
II

HCIC =CCIH(cis) HC12-CHb 2 6.04 2.45 11.67
0
11

HC1C = CC1H (trans) H2Cl-CCla 2 4.57 1.95 6.24

0

Cl2C = CHCI Cl3 - CHb 3 12.88 4.73 21.59
0

C12HC-C-Cla 3 7.45 4.73 15.43

0

C12C = CC12 C13C - CClab 4 9.28 7.18 18.69

aPredicted metabolite.
bObserved metabolite.
cA(AJHjR) = triplet biradical isomerization enthalpies.
dA(AHeP) = stability of epoxide, i.e, AHfSepoxide) - AHHparent).
eA(AHiep) = isomerization energy of carbocations of epoxides. All quantities relative to most favorable enthalpy differences.
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of the aldehyde with respect to the alcohols 4[AHR(4)]
appears to be a contributing factor in determining rank
order of carcinogenic activity.
The calculated values of ELUMO could at least be a

useful binary screening parameter for the carcinogenic
activity of saturated halohydrocarbons. Of the tested
compounds, those with E*T,*LUMO less than -0.8 eV are
potent carcinogens, while those with values above -0.15
eV have little or no activity. Thus there may be a thresh-
old value of ET*LUMO below which a compound can be
considered a carcinogen. On this basis, the 1,1,1,2-te-
trachloroethane would be predicted to be an active car-
cinogen similar in potency to 1,1,2,2-tetrachloroethane,
while monochloroethane is predicted to be inactive.
While there is no direct evidence for the nature of

the active carcinogenic form of chloroethanes, our re-
sults strongly suggest that the acyl chlorides and chlo-
roaldehydes assumed by us to be important are indeed
the activated forms of these parent saturated
halohydrocarbons.
Summary of Main Conclusions of Chloroethylene

Study. Of all the thermodynamic quantities calculated
for these complex transformations of chloroethylenes
(Fig. 11), only the three given in Table 12 correlate with
their rank order of metabolism. Given in Table 12 are:
the relative enthalpies of isomerization of the triplet
biradicals l(AH,.), leading directly to carbonyl products
from the initial products of oxidation of parent com-

pounds by cytochrome P-450s; the stabilities of epoxide
intermediates relative to each parent compound
[A(AHe/))]; and the relative enthalpies of isomerization
of these epoxides [A(AHjieI,)], an alternative pathway
leading to formation of carbonyl products. Consistently,
the energetics of these steps also appear to be most
involved in determining product specificities.
The results obtained are consistent with evidence from

observed secondary isotope effects (89) that P-450 epox-
idations occur by a radical two-step mechanism and that
the second step, ring closing, is rate-determining. Our
results suggest further that isomerization to aldehyde-
type products is a determining step in extent of metab-
olism of ethylene chlorides, both with and without the
intermediacy of epoxide formation, and that different
products can be selectively formed by these two alter-
native routes.
As shown in Table 13, if carbonyl compounds are ul-

timate carcinogens, the enthalpy of isomerization of both
the initial triplet radical of P-450 oxidation [A(zHi,.)] and
of epoxide intermediates [A(lH,)] to form the carbonyl
products were found to be promising indicators of car-

cinogenic activity. As also shown in Table 11, no rela-
tionship was obtained between any measure of the
electrophilicity of the carbonyl compounds that could be
formed from the parent compound and their carcino-
genic activity.

If epoxides can be involved as intermediates in the

Table 13. Correlation of calculated properties with relative carcinogenicity of parent chloroethylenes assuming carbonyl products as
ultimate carcinogens.

Putative molecular indicators

Rank order Postulated
carcinogenicity, ultimate ELUMO,a A(AHiep)q

Parent 2ompounds parent carcinogen qCa eV kcal/moleb kcal/molec
0
11

-H2C = CHCI 1 ClCH2CHde + 0.058 -0.152 0 0
0
11

H2C = CC12 2 H2ClCCCldU e + 0.116 -0.670 -4.2 -4.7
0

11
HClC = CCIH 2 HCl2CCHe + 0.09 -0.838 6.0 11.7

0
11

H2ClCCCld + 0.116 -0.670 4.6 6.2
0

11
C12C = CCl2 3 C13CCCld,e + 0.191 -1.496 9.3 18.7

0
11

HCIC = CC2 4 Cl3CCH7 +0.159 -0.033 12.9 21.6
0

11
C12HCCCl- ( +0.152) ( -1.209) (7.45) (15.4)

aIndicator of electrophilic activity of ultimate carcinogen; no correlation with relative carcinogenic activity
bA(AHir): Relative isomerization of triplet radical species to form carbonyl ultimate carcinogens; could be a useful predictor for unknown

haloalkene compounds.
cA(AHiep): Isomerization energy of carbocations of epoxides to form carbonyl ultimate carcinogens; could be a useful predictor.
dCalculated products.
eObserved products.
fProduct observed from parent compound in vitro.
gProduct observed from epoxide in vitro.
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formation of carbonyl compounds, it is also possible that
they can be active as ultimate carcinogens. As shown
in Table 14, there is some relationship between the cal-
culated net charge on the cationic carbon of the ion of
each epoxide, as well as with the relative stability of
the epoxide (AHep) from which these carbocations are

formed, and the relative carcinogenic activity, of the
parent compunds.

In screening of unknown compounds with haloethyl-
ene functional groups, all four promising indicators of
carcinogenic activity identified here (i.e., isomerization
energies with and without epoxide intermediates, sta-
bility of epoxides relative to parent compound, and the
net charge on the epoxide carbocation) should be cal-
culated to further sort out their relative importance and
predictive capabilities.
For example, using the criteria corresponding to all

three modes of activation, we predict that 1,2-dichlo-
roethylene, which has not yet been studied, will be a

carcinogen with an activity intermediate between vi-
nylidene chloride and tetrachloroethylene. This predic-
tion remains to be verified.
For the chloroethylenes, three possible modes of

transformations to active carcinogens could be impor-
tant: formation of carbonyl products directly or via
epoxide intermediates and formation of carbocations
from the epoxides. If carbonyl products are the ultimate
carcinogens, then our results imply that their extent of
formation by isomerization form primary products of P-
450 oxidation rather than their electrophilicities are dis-
criminating factors in determining the relative carcin-
ogenic potency of the parent compounds.
On the other hand, if epoxides themselves can act as

ultimate carcinogens without isomerization to carbonyl
compounds, then the electrophilicity of their carboca-
tion is a good indicator of relative parent compound
activity.

Alkylnitrosamines
Alkylnitrosamines are a ubiquitous class of chemical
carcinogens that can be formed in situ by the in vivo
reaction of nitrites with amines (157). In common with

R

R .N - N = O

chemical carcinogens described above, polycyclic aro-
matic hydrocarbons, aromatic amines, chloroethanes,
and chloroethylenes, the alkylnitrosamines require mul-
tiple transformations to their active form. Evidence
supporting this conclusion, particularly for dimethyl-
nitrosamine (DMN), the most studied analog, is sub-
stantial (158-163). While studies of other longer chain
dialkylnitrosamines are less extensive, additional evi-
dence exists that they also require transformation to
active carcinogenic species (162,164). Three types of
active species have been implicated in DNA adduct for-
mation: alkyl diazohydroxides, diazocarbonium ions and
alkyl carbocations. While evidence of covalent adduct
formation is extensive (165-168), the electrophilic spe-
cies forming such adducts have not been definitely iden-
tified. Our studies of nitrosamines are of two types:
further elucidation of mechanisms of formation of pu-
tative ultimate carcinogens (Step 3 of protocol) and iden-
tification and calculation of reliable indicators of relative
carcinogenicity of related disalkylamines considering all
three types of active species suggested.
Elucidation ofMechanism ofFormation ofPutative

Ultimate Carcinogens. Although many steps leading
to nitrosamine activation are unknown, the most ac-
cepted pathway (169) for parent compounds whose prin-
cipal target organ is the liver to active carcinogens is
shown schematically in Figure 15. The first step is
thought to be hydroxylation of the (cx-w) alkyl group by
the active oxygen atom species of the cytochrome P-
450, with the a-hydroxylation leading directly to active
carcinogens. Both our mechanistic studies of model sys-
tems (85,170) and experimental studies of alkylhydrox-
ylation indicate that a radical mechanism for enzymatic
hydroxylation is a likely one (87).
As shown schematically in Figure 15 and in more

detail in Figure 16, once formed, the CQ,-hydroxynitro-
samine (3a), a particularly unstable intermediate, is
thought to undergo a sequence of nonenzymatic trans-
formations leading to several species suggested as ul-
timate carcinogen: alkyldiazohydroxides, RNNOH (5-
7); diacarbocatiums ions, RNN + (6); or alkycarbocations
R + (7). However, neither theoretical (171,172) nor ex-
perimental studies (173) have thus far established a
mechanism for alkyldiazohydroxide formation nor de-
finitively implicated it or ions 6 or 7 as the ultimate

hble 14. Correlation of calculated properties with relative carcinogenicity of parent chloroethylenes assuming epoxide carbocation
as ultimate carcinogen.

Candidate molecular indicator
Rank order Postulated

Parent compounds carcinogenicity, parent ultimate carcinogen qC. A(AHep)
H2C = CHCI 1 H2C+-CHCIOH + 0.536 0

H2C = CC12 2 H2C+-CCl2OH + 0.561 2.3

HCIC = CHCI ? HCIC'-CHCIOH + 0.412 2.5

Cl2C = CC12 3 Cl2C-CCl1OH + 0.329 7.2

HCIC = CC2 4 Cl2C'-CHClOH + 0.326 4.7
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FIGURE 15. Schematic outline of nitrosamine metabolism.

carcinogen. The most widely assumed mechanism for
this transformation is a two-step pathway (pathway I)
via a monoalkylnitrosamine (4) which tautomerizes to
form RNNOH (173). However, an alternative mecha-
nism, pathway II, a concerted pathway which leads di-
rectly from the C,-hydroxydialkylnitrosamine (3) to the
RNNOH species (5) by a six-membered transition state,
TS4 (174), is also possible.

In systematic mechanistic studies, (175) we have used
the semiempirical molecular orbital method called MNDO
(154-156) and the ab-initio method Gaussian 80 (176),
together with identification of stationary points and

transition states to compare the energetics of pathways
I and II to the formation of RNNOH. The results in-
dicate that the concerted mechanism for the formation
of RNNOH is kinetically favored, i.e., the free energy
of activation for transition state TS4 is much less than
that for transition states TS2 and TS3.
Thus the most probable mechanism for transforma-

tion of a parent dialkylnitrosamine to an alkyldiazohy-
droxide species appears to be: initial abstraction of a H
radical from the a-carbon atom of the parent compound
by an electrophilic oxygen radical of cytochrome P-450
leading to formation of an OH radical and a nitrosamine
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radical 2, R'(RCH)NNO; rapid recombination to form
species 3, a hydroxynitrosamine; and concerted rear-
rangement (pathway II) of the hydroxynitrosamine to
an alkyldiazohydroxide.
Molecular Indicators ofCarcinogenic Activity. In

the second part of the study described here, we have
used the postulated transformation pathway described
above as a guide to the identification and calculation of
molecular properties which could be reliable indicators
of the relative metabolism and carcinogenic potency of
a series of five symmetric dialkylnitrosamines (R =

methyl, ethyl, n-propyl n-butyl, and n-pentyl), for which
rat liver carcinogenicity has been measured (164). In
particular, we have considered the possibilities that
RNNOH species (5), RNN+ species (6), and R+ species
(7) can all be the electrophilic species which interact
with tissue nucleophiles and that they are formed se-
quentially from the a-hydroxyl intermediate (3a). Thus,
we have selected and, using MNDO (154-156), have
calculated the following candidate molecular indicators
of relative carcinogenic activity ofthese five compounds:
stability of radical species leading to CQ-hydroxy inter-
mediates (3a), and those that do not 3b, 3c; the relative
enthalpies of activation (rate) of formation of RNNOH
species (5) from the species 3a; the relative stabilities
of RNNOH (5), of RNN+ (6), and R+ (7), species; elec-
trophilic properties of the putative carcinogens RNNOH
(5) RNN+ (6), and R+ (7) which could be indicators of
either their electrostatic or covalent electrophilicities.
Among the electrostatic indicators of electrophilicity
calculated were: net atomic and group charges and the
orbital electron density on the a-carbon which is the
alkylation site for DNA-bases. Among the covalent in-
dicators of electrophilicity calculated were: the extent
of participation of the a-carbon in the lowest empty
molecular orbitals and the energy of these orbitals.

Results
Promising Molecular Indicators
Of all the calculated properties, only the relative sta-

bilities of the radical intermediates (3a,b,c) formed in
the postulated first step of P-450 hydroxylation of alkyl
amines could be used as reliable molecular indicators of
relative carcinogenicity of this class of very similar sym-
metric dialkyl nitrosamines.

These promising molecular indicators, radical stabil-
ities together with carcinogenic activities of the parent
compounds are shown in Table 15. We see from Table
15 that formation of radicals at the secondary a-carbon
positions is favored over the ,-positions, in keeping with
the known product distribution of dipropylnitrosamine
(177). In general, using radical stability as a criterion,
hydroxylation at all secondary carbon positions could
occur and is greatly favored over hydroxylation at pri-
mary carbon terminal positions (X). Of all the primary
terminal (w) carbon positions, that of dimethylnitrosa-
mine, which is also the a-carbon position, forms the
most stable primary carbon radical.
As shown in Table 15, the enhanced carcinogenic ac-

tivity of diethylnitrosamine relative to dimethylinitro-
samine could be associated with its increased a-carbon
radical stability and hence enhanced hydroxylation at
this site, together with no significant competing hy-
droxylations at the terminal carbon that could led to
detoxification. For all the longer alkyl-chain compounds,
a-carbon hydroxylation is equally favored compared to
the diethyl compound. However, as the alkyl chain
lengthens, there are more favorable secondary carbon
sites for hydroxylation. Hydroxylation ofthe alkyl chain
at these sites form more stable products than a-carbon
hydroxylation with increased water solubility, thus al-
lowing them to be detoxifying pathway since these prod-
ucts will have enhanced likelihood of being excreted. In
addition, such sites are favorable for conjugation with
detoxifying agents such as glucuronic acid. These ad-
ditional hydroxylation sites then could account for the
diminished carcinogenicity with increasing alkyl chain
length for R > C2H5.
Experiments with dipropylnitrosamine (DPN), how-

ever, indicate that hydroxylation of ,B to w carbon atom
sites might not lead exclusively to detoxification but to
new parent compounds, as illustrated in Figure 15, which
could recycle through cytochrome P-450 and ultimately
form carcinogenic (178,179) products. Thus, possible re-
cycling of products through P-450 oxidations appear to
also be a factor in the ultimate carcinogenicity gf the
parent compound.

Other Molecular Properties Examined
The extent of further proposed nonenzymatic trans-

formations of C.-hydroxynitrosamines to alkyldiazo-

Table 15. Relationship of relative toxicity to calculated stabilities of radicals assumed to be formed during enzymatic (P-450)
hydroxylation of alkylnitrosamines.

LD50, AH, kcal/moleb,e
R2N - N = O molelkga AH(a) AH(1) AH(y) AH(8) AH(w)
R = CH3 0.0054 25.41w
R = C2H5 0.00063 19.59 29.720
R = C3H7 0.0088 19.81 22.62 30.3r
R = C4HA 0.025 19.80 23.11 23.19 30.23w
R = C5H 0.26 19.80 23.15 23.10 23.33 30.21l

a LDw in female rat liver. Data of Bartsch et al. (164).
b(AH) = AH, (radical)-AH; (parent).
'Omega (w) denotes terminal methyl group.
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hydroxides (RNNOH), diazonium ions (RNN+), and
alkylcations (R+) were examined as possible indicators
of relative carcinogenic activity. As illustrated in Table
16, no direct correlation was found between carcino-
genic potencies and either enthalpies of formation or of
activation for transformation of hydroxynitrosamines 3
to alkyldiazohydroxides 5. Nor was there any correla-
tion between relative potencies and the stabilities of
putative ultimate carcinogenic species 5, 6, or 7 relative
to their parent compounds (Table 17). Rather, as shown,
more of an inverse relationship was obtained.

Selected electrophilic properties of the putative car-

cinogenic species 5, 6, and 7 were also calculated and

Table 16. Comparison of relative carcinogenicity with calculated
stabilities and heats of activation for the transformation of

sym-a-hydroxydialkylnitrosamines to
alkyldiazohydroxides (RNNOH) through a concerted mechanism.

LD50, AHr(4), AH*4,
R mole/kga keal/moleb kcallmolec
CH3 0.0054 10.48 66.49
C2HA 0.00063 1.53 64.88
C3H7 0.0088 -2.93 61.48
C4H9 0.025 -3.16 61.47
CAIl1 0.26 -3.20 61.45

aLD50 in female rat liver. Data of Bartsch et al. (164).
bAHr(4) is the enthalpy of the reaction: RR'CH20HNNO

RNNOH + R'CHO; AHr = [AH1(RNNOH) + AHf(R'CHO) ] -
AHARR'CH20HNNO).
'AH4* is the enthapy of activation in the concerted transformation

of RR'CH20HNNO to RNNOH and R'CHO. AH'4 = Hf(TS4) -
AHs(3).

examined as possible useful indicators as presented in
Tables 18-20. From Table 18, we see that RNNOH does
not appear to be a particularly electrophilic species by
either simple electrostatic (q,) or covalent criteria.
The most widely assumed active form of nitrosamides

and nitrosamines is their alkyldiazonium ions, RNN+.
Several recent calculations modeling the interaction of
this species with model nucleophiles (180) and nucleic
acid bases (181) have been reported. We have calculated
electrophilic properties of the RNN + species that could
be indicators of their relative ease and extent of adduct

Table 17. Comparison of relative carcinogenicities with
MNDO calculated stabilities of postulated ultimate carcinogens.a

LD50, I6Hr (5), AHr(6), AHr(7),
R mole/kgb kcal/molec kcal/moled kcal/molee

CH3 0.0054 6.69 12.03 28.87
C2H5 0.00063 1.16 1.83 4.13
C3H7 0.0088 0.12 0.69 1.54
C4Hq 0.025 0.03 0.21 0.41
C5Hjj 0.26 0.0 0.0 0.0

aAll values are relative to the most stable compound.
bLDw in female rat liver.
CAHr (5) is the enthalpy of the reaction: R2NNO + O(3P)

RNNOH + R'CHO; AHr (5) = [AHI(RNNOH) + AHXIR'CHO)] -

[AHf(R2NNO) + AHfO(3P)].
dAHr (6) is the enthalpy of the reaction: R2NNO + O(3P)

RNN+ + OH- + R'CHO;AHr(6) = [AHA<RNN+) + AHf(OH-) +

AHA(R'CHO)] - [AH(R2NNO) + AHfO(3P) ].

eAHr (7) is the enthalpy of the reaction: R2NNO + O(3P)
R+ + N2 + OH- + R'CHO;AHr(7) = [AHX(R+) + AHf(N2) + AHf
(OH-) + AHf(R'CHO)] - [AHf(R2NNO) + lhO(3P)].

Table 18. MNDO calculated electrophilic properties of the putative ultimate carcinogen RNNOH and comparison with carcinogenicity.

R LD50, mole/kg qCab P,CCVc ELEMO + Id p7Ca(LEMO + 1)e PCa-NIf
CH3 0.0054 0.030 0.8&3 3.224 0.21 0.433
C2H5 0.00063 0.003 0.916 3.015 0.34 0.428
C3H7 0.0088 0.019 0.904 3.026 0.29 0.429
C4H9 0.025 0.018 0.905 2.974 0.26 0.429
C5H11 0.26 0.018 0.905 2.960 0.24 0.429

'LD50 in female rat liver. Data of Bartsch et al. (165).
bqC, = Mulliken net atomic charge of a-carbon atom.
cpC,, = total electron density in the fI orbital of the a-C atom.
dELEMo+l = energy of the lowest unoccupied molecular orbital with significant a-carbon atom character. LEMO is a T*(NNO) orbital.
ep,,C. (LEMO + 2) = electron density in the CQ 'IT atomic orbital of the (LEMO + 2) molecular orbital.
fpCa,-N, = Mulliken bond overlap density between the a-carbon and the nitrogen atom.

Table 19. MNDO calculated electrophilic properties of the putative ultimate carcinogen RNN+ and comparison with carcinogenicity.

R LD50, mole/kga qN2b qRb qC b peCc ELEMO+2P2 C (LEMO + 2)e PC -Nl

CH3 0.0054 0.445 0.600 0.153 0.982 -5.920 0.515 0.396
C2H5 0.00063 0.426 0.613 0.144 0.999 -5.801 0.515 0.376
C3H7 0.0088 0.422 0.617 0.157 0.993 -5.712 0.515 0.375
C4Hq 0.025 0.420 0.618 0.157 0.994 -5.677 0.514 0.374
CAH,1 0.26 0.419 0.619 0.157 0.995 -5.661 0.515 0.373

'LD. in female rat liver. Data of Bartsch et al. (164).
bqi = Mulliken net atomic charge in atom or group i.
cp,,C,, = total electron density in the wr orbital of the at-C atom.
dELEMo+2= energy of the lowest unoccupied molecular orbital with significant a-carbon atom character. LEMO is a r*(NNO) orbital.
ep C (LEMO + 2) = electron density in the CG rr atomic orbital of the (LEMO + 2) molecular orbital.
fpe -N, = Mulliken bond overlap density between the a-carbon and the nitrogen atom.
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Table 20. MNDO calculated electrophilic properties of the putative
ultimate carcingen RA' and comparison with carcinogenicity.

R LD50, mole/kga qC.b PCTrCc ELEMOd
CH3 0.0054 0.499 1.00 -9.302
C2H5 0.0063 0.400 0.90 -8.591
C3H7 0.0088 0.409 0.90 -8.393
C4H9 0.025 0.403 0.90 -8.294
C5H11 0.26 0.401 0.89 -8.256

'LDr, in female rat liver.
bqC_ = Mulliken net atomic charge of a-carbon atom.
cp,C<, = total electron density in the IT orbital of the a-C atom.
dELEMO = energy of the lowest empty molecular orbital. LEMO is a
IT*(NNO) orbital.

formation. These results are summarized in Table 19.
The results indicate that N2 rather than Ca has the
largest positive charge. While the R group has a large
positive charge, there is no relationship between qR and
relative carcinogenic potency. In incipient covalent bond
formation, neither LEMO nor LEMO + 1 are appropri-
ate electron-accepting orbitals. Characteristics of
(LEMO+2) are not indicators of relative carcinogenic
activity. While the calculated value for ease of Ca-N,
bond breaking, [p(Ca-Ni)] is less for [C2H5NN]+ than
for [CH3NN'], no correlation between p(Ca-N1) and
relative carcinogenicity was obtained.
The species R + is formally an alkylating agent only

in an SN' reaction with DNA bases. As shown in Table
20, alkyl cations R+ are indeed electrophilic with sub-
stantial positive charge on the Ca atoms. However, de-
localization of this charge as the chain length of R
increases does not account for the observed variation
in carcinogenicity. Moreover, as shown in Table 17, the
stability of this R+ carbocation does not correlate with
parent compound carcinogenicity. This result is in con-
trast to that found for carbocations of polycyclic aro-
matic hydrocarbon bay region diolepoxides, where the
stability of the carbocation was a good indicator of par-
ent compound carcinogenicity.

In summary, of all the properties examined, the initial
hydroxylations by cytochrome P-450 at activating (cx-
carbon) and inactivating (13-w-carbon) positions appear
to be the major modulators of parent compound activity
as rat liver carcinogens. Neither the extent of further
proposed nonenzymatic transformation of Ca-hydrox-
ynitrosamines to alkyldiazohydroxides (RNNOH), dia-
zonium ions (RNN +) + or alkylcations (R ), nor the
electrophilicity of these species appeared to be signifi-
cant factors in differentiating parent compound carcin-
ogenic activity for this class of very similar symmetric
dialkylnitrosamines. It is possible that these additional
factors will be important for comparisons among more
diverse types of nitrosamines. Calculations for such a
data set would be the most reasonable next step in
studies of nitrosamines.

Support for this work from NCI Contract CP 15730 is gratefully
acknowledged.
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